Belgian National Contact Point for the H2020 MSCA program

FNRS - MSCA ITN/RISE Info Session
October 5, 2018

Miikka VIKKULA, MD, PhD
Professor of Human Genetics,
Institut de Duve, University of Louvain (UCL) &
Walloon Excellence in Lifesciences and Biotechnology (WELBIO)
Brussels, BELGIUM

Cliniques universitaires St-Luc
Centre for Vascular Anomalies

de Duve Institute
Human Molecular Genetics

Cliniques universitaires St-Luc
Centre for Human Genetics

copyright © Clin.univ.St-Luc / H. Depasse

Vikkula © 2018
Planning

1) Plan well ahead: if possible : 3-6 months!

2) Select a cohesive group of beneficiaries

3) Add company/societal partners

4) Administrative issues to all ASAP: PIC # etc.

5) Foresee regular Skype/Webex meetings

6) Ask for input early enough from partners for various Tables
7) Read carefully guidelines, and address all in your application.

8) Structure for the scientific part is unusual

9) Gantt charts etc for interactions

10) Secondments of ESRs important
 Plan them logically and well!
Content: how to write

TABLE OF CONTENTS (max. 1 page)

1. EXCELLENCE
 1.1 Quality, innovative aspects and credibility of the research programme
 1.1.1 Introduction, objectives and overview of the research programme
 1.1.2 Research methodology and approach
 1.1.3 Originality and innovative aspects of the research programme
 1.2 Quality and innovative aspects of the training programme
 1.2.1 Overview and content structure of the training
 1.2.2 Role of non-academic sector in the training programme
 1.3 Quality of the supervision
 1.3.1 Qualifications and supervision experience of supervisors
 1.4 Quality of the proposed interaction between the participating organisations
 1.4.1 Contribution of all participants to the research and training programme
 1.4.2 Synergies between participants
 1.4.3 Exposure of recruited researchers to different (research) environments, and the complementarity thereof
 1.5 IMPACT
 2.1 Enhancing the career perspectives and employability of researchers and contribution to their skills development
 2.2 Contribution to structuring doctoral research training at the European level and to strengthening European innovation capacity
 2.2.1 Contribution of the non-academic sector to the doctoral training
 2.3 Quality of the proposed measures to exploit and disseminate the results
 2.3.1 Dissemination of research results
 2.3.2 Exploitation of results and intellectual property
 2.4 Quality of the proposed measures to communicate the activities to different target audiences
 2.4.1 Communication and public engagement strategy
 2. QUALITY AND EFFICIENCY OF THE IMPLEMENTATION
 3.1 Coherence and effectiveness of the work plan
 Table 3.1a Description of Work Packages
 Table 3.1b Deliverables List
 Table 3.1c Milestones List
 Table 3.1d Individual Research Projects
 3.2 Appropriateness of the management structures and procedures
 3.2.1 Network organization and management structure
 3.2.2 Supervisory Board (SB) and other network bodies
 3.2.3 Recruitment strategy
 3.2.4 Progress monitoring and evaluation of individual projects
 3.2.5 Intellectual Property Rights (IPR) and exploitation management
 3.2.6 Gender aspects
 3.2.7 Data Management and Open Access
 Table 3.2a Implementation Risks
 3.3 Appropriateness of the infrastructure of the participating organisations
 3.4 Competences, experience and complementarity of the participating
Scope

- Why should Europe train young scientists to your area of interest?
- Research should not be isolated (not too academic)
- Benefits to many people/ many Europeans
- Well defined area of interest where there is a need to form young scientist for academia, industry, society
 * Not too narrow
 * Too large might be difficult for coherence of science
 * Detailed description of the learning experience of the students
A multidisciplinary approach towards sustainable improvement in rare diseases care uniting Europe's top class vascular research to find new treatment strategies for vascular anomalies
V.A. Cure: Academic beneficiaries

- most, but not all, knew each other already
- choose well your beneficiaries
- had 2 very involved beneficiaries to help search partners and to write
V.A. Cure : Industry beneficiaries

John WISEMAN
ASTRAZENECA
Mölndal, Sweden

Prateek SINGH
FINNADVANCE
Oulu, Finland

AstraZeneca
FinnAdvance
V.A. Cure partners

Laurence BOON
Cliniques universitaires Saint-Luc
Brussels, Belgium

Mathias HOWELL
OLINK BIOSCIENCE
Uppsala, Sweden

Bjorn BAKKEN
PERIMED
Järfälla, Sweden

Tuula HEINONEN
FICAM
Tampere, Finland

Birgitta STOLZE
LLS Rowiak LaserLabSolutions
Hannover, Germany

Kristin STIELER
Sysmex Inostics
Hamburg, Germany

Maria Soledad BAREA
VASCAPA
Brussels, Belgium

Thomas STEGER-HARTMANN
Bayer AG
Berlin, Germany
“cutting-edge” technologies

- including next-generation sequencing (including single-cell RNA-Seq)
- CRISPR-Cas genome editing
- generation of animal models with inducible deletion and mosaic analyses
- generation of iPSCs
- microfluidics
- *in vivo* phage display to identify endothelial targets
- light sheet-, confocal-, and multiphoton live-imaging
Network and Training
V.A. Cure: Synergies between participants

<table>
<thead>
<tr>
<th>Key technique/expertise/resource</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced microscopic imaging of cells and tissues (KI)</td>
<td>✓</td>
</tr>
<tr>
<td>Single cell sequencing (KI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis of perivascular ECM remodelling (UO)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vivo phage display technique (AZ)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TGFβ/BMP signalling expertise (INS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA patient samples biobank (DDUV)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse complex vascular phenotyping (UU)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>VA zebrafish models (UP)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>EC metabolism (MPI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microfluidics Platform (FA)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iPSCs (AZ)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High sensitivity mutation detection in biopsy samples (OB)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Human EC/mesenchymal stem cell co-culture model (FIC)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Scientific work packages (max 4?)
Secondments: in academia and industry!

<table>
<thead>
<tr>
<th>ESR</th>
<th>Ac. Exp. 1</th>
<th>Ac. Exp. 2</th>
<th>Ac. Exp. 3</th>
<th>Ind. Exp. 1</th>
<th>Ind. Exp. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DDUV (h)</td>
<td>UO</td>
<td>UP</td>
<td>FA</td>
<td>OB</td>
</tr>
<tr>
<td>2</td>
<td>DDUV (h)</td>
<td>UO</td>
<td>UP</td>
<td>FA</td>
<td>OB</td>
</tr>
<tr>
<td>3</td>
<td>UP</td>
<td>UU</td>
<td>KI</td>
<td>AZ (h)</td>
<td>OB</td>
</tr>
<tr>
<td>4</td>
<td>UU (h)</td>
<td>UO</td>
<td></td>
<td>OB</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>UO</td>
<td>UP</td>
<td></td>
<td>AZ (h)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>KI (h)</td>
<td>INS</td>
<td>UU</td>
<td></td>
<td>FA</td>
</tr>
<tr>
<td>7</td>
<td>UU (h)</td>
<td>KI</td>
<td>DDUV</td>
<td></td>
<td>FA</td>
</tr>
<tr>
<td>8</td>
<td>UO (h)</td>
<td>DDUV</td>
<td>FIC</td>
<td>FA</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>UP (h)</td>
<td>MPI</td>
<td>DDUV</td>
<td>LLS</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>UP (h)</td>
<td>MPI</td>
<td>DDUV</td>
<td>LLS</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MPI (h)</td>
<td>DDUV</td>
<td>UU</td>
<td>AZ</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>INS (h)</td>
<td>UP</td>
<td>UU</td>
<td>AZ</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>INS (h)</td>
<td>KI</td>
<td>DDUV</td>
<td>FA</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>KI</td>
<td>INS</td>
<td></td>
<td>FA (h)</td>
<td></td>
</tr>
</tbody>
</table>
V.A. Cure Training Programme

- Research project
- Local training
- Internat. & intersectoral exposure
- Network-wide training
- Daily learning

Vikkula © 2018
Dissemination of results in social media

V.A. Cure website - screencast

European Researchers' Night

Rare Disease Day

Patients’ day of VASCAPA

Press releases and social media announcements

Facebook & Twitter: short descriptions of key findings, images, bullet points (All ESRs responsible)

Professional help from communication and IT offices of Universities and the companies.
V.A. Cure: General

We used figures, tables and schemes whenever possible.
V.A. Cure: General

We have 4 planned workshops (1-2 days each)

* Training of ESRs in various scientific, industrial, and societal aspects

* Reporting on scientific results

* Visits: industry and other partners
V.A. Cure: General

We do not have a hired management company!

- Writing on ourselves

- Management with existing infrastructures (already help from DDUV)

- Foresee hiring a project manager
V.A. Cure Network:
complementary contributions of all partners to the network.

The V.A. Cure network

Connection to networks to show that the research is not isolated and will bring benefits to many people.

8 universities,
7 companies,
a hospital and
a patient organisation

Vikkula © 2018
Take home messages

1) Plan well ahead: if possible: 3-6 months!
2) Select a cohesive group of beneficiaries
3) Add company/societal partners
4) Administrative issues to all ASAP: PIC # etc.
5) Foresee regular Skype/Webex meetings
6) Ask for input early enough from partners for various Tables
Take home messages

7) Read carefully guidelines, and address all in your application.

8) Structure for the scientific part is unusual

9) Gantt charts etc for interactions

10) Secondments of ESRs important
 Plan them logically and well!